TUGAS SENSOR


KONTROL TANAM DAUN BAWANG HIDROPONIK DI RUMAH

1. Tujuan [Kembali]
  1. Dapat mengetahui bentuk rangkaian dari kontrol hidroponik

  2. Dapat menjelaskan prinsip kerja rangkaian yaknKONTROL TANAM DAUN BAWANG HIDROPONIK DI RUMAH

  3. Dapat membuat rangkaian tugas sensor

2. Alat dan Bahan [Kembali]
    A. ALAT
         Instrumen
         1) Voltmeter DC 


            Berikut adalah Spesifikasi dan keterangan Probe DC Volemeter

          Terminals Mode

         1) Power Suply

Berfungsi untuk memberikan tegangan sumber pada rangkaian
Input voltage: 5V-12V
Output voltage: 5V
Output Current: MAX 3A
Output power:15W
conversion efficiency: 96%

          Generator

         1) Baterai

    B. BAHAN
        1) Transistor

 

 

         Spesifikasi dan konfigurasi pin:


  2) Resistor


Spesifikasi:


Cara menghitung nilai resistor:


  3) Dioda



  4Op-Amp 

Spesifikasi dan Konfigurasi Pin:

Spesifikasi dari IC UA741 meliputi berikut ini:

         Supply tegangan ±18V

         Perbedaan tegangan input daya adalah ±15V

         Rasio penolakan mode umum adalah 90dB

         Amplifikasi tegangan diferensial adalah 200V/mv

         Arus supply adalah 1.5mA

         Pin ini dapat diakses dalam berbagai paket seperti paket 8-Pin PDIP, VSSOP, & SOIC

IC UA741 terdiri dari 8-pin, Konfigurasi:

                                                            IC UA741: Konfigurasi Pin, Diagram Rangkaian, dan Aplikasi 

         Pin1 & Pin5 (Offset N1 & N2): Pin ini digunakan untuk mengatur tegangan offset jika perlu

         Pin2 (IN-): Pin Inverting Op-amp

         Pin3 (IN +): Pin Non-inverting dari Op-amp

         Pin4 (Vcc-): Pin ini terhubung ke ground jika tidak rel negatif

         Pin6 (Output): output daya pin Op-amp

         Pin7 (Vcc +): Pin ini terhubung ke + ve rail dari supply tegangan

         Pin8 (NC): Tidak ada koneksi



5. OP AMP LM358


A. konfigurasi pin

Pin-1 dan pin-8 adalah o / p dari komparator

Pin-2 dan pin-6 adalah pembalik i / id

Pin-3 dan pin-5 adalah non inverting i / id

Pin-4 adalah terminal GND

Pin-8 adalah VCC +



B. spesifikasi 

· Ini terdiri dari dua op-amp internal dan frekuensi dikompensasi untuk gain kesatuan

· Gain tegangan besar adalah 100 dB

· Lebar pita lebar adalah 1MHz

· Jangkauan pasokan listrik yang luas termasuk pasokan listrik tunggal dan ganda

· Rentang catu daya tunggal adalah dari 3V ke 32V

· Jangkauan pasokan listrik ganda adalah dari + atau -1.5V ke + atau -16V

· Penyaluran arus pasokan sangat rendah, yaitu 500 μA

· 2mV tegangan rendah i / p offset

· Mode umum rentang tegangan i / p terdiri dari ground

· Tegangan catu daya dan diferensial i / p tegangan serupa ayunan tegangan o / p besar

 

 


6. Decoder (IC 7447)


A. Spesifikasi
  • has a broader Voltage range
  • A variety of operating conditions
  • internal pull-ups ensure you don't need external resistors
  • Four input lines and seven output lines
  • input clamp diode hence no need for high-speed termination
  • comes with open collector output 

Komponen Input: 

1. Sensor LM35




Spesifikasi:

  • Tegangan kerja berkisar 4 Volt DC - 30 Volt DC.
  • Output linier dengan kenaikan tegangan 10mV (0.01V) untuk setiap kenaikan suhu sebesar 1 derajat celcius.
  • Arus kerja yang rendah yaitu kurang dari 60mikro Ampere.
  • Dapar mengukur suhu dengan range -55 sampai 150 celcius.
  • Akurasi kuranglebih 0.5 derajat celcius pada suhu ruangan.


2. Water Sensor

Spesifikasi :


3. Sensor UV


Pinout

Spesifikasi

Grafik Respon Sensor


4. Relay



Konfigurasi pin relay:

Spesifikasi Relay:



5. Potensiometer


Spesifikasi:

6. Switch atau Button



Spesifikasi:

Komponen Output

1. LED



2. Motor DC


Konfigurasi pin:

                Spesifikasi Motor DC


3. Buzzer

   

Buzzer Features and Specifications:
  • Rated Voltage: 6V DC
  • Operating Voltage: 4-8V DC
  • Rated current: <30mA
  • Sound Type: Continuous Beep
  • Resonant Frequency: ~2300 Hz 
  • Small and neat sealed package
  • Breadboard and Perf board friendly

4.  7 Segment Anoda


A. Spesifikasi
  • Available in two modes Common Cathode (CC) and Common Anode (CA)
  • Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
  • Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
  • Low current operation
  • Better, brighter and larger display than conventional LCD displays.
  • Current consumption : 30mA / segment
  • Peak current : 70mA


3. Dasar Teori [Kembali]

  • Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.





Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor


  • Kapasitor

Kapasitor atau disebut juga dengan kondensator adalah komponen elektronika pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu. Fungsi kapasitor (kondensator) di antaranya adalah dapat memilih gelombang radio pada rangkaian tuner, sebagai perata arus pada rectifier dan juga sebagai filter di dalam Rangkaian Power Supply (Catu Daya). Satuan nilai untuk kapasitor (kondensator) adalah Farad (F).

Rumus Kapasitas Kapasitor

 


 

                Rumus Kapasitor Keping Sejajar (Udara)


                Rumus Kapasitor Keping Sejajar (Medium)

 


 

                Rumus Kapasitas Kapasitor Bentuk Bola

 



  • Induktor


Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.

Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.

Simbol Induktor

Berikut ini adalah Simbol-simbol Induktor :

Simbol-simbol Induktor (Coil)

Simbol Induktor di proteus :

Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :

  • Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
  • Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
  • Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
  • Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.
Jenis-jenis Induktor (Coil)
Berdasarkan bentuk dan bahan inti-nya, Induktor dapat dibagi menjadi beberapa jenis, diantaranya adalah :
  • Air Core Inductor – Menggunakan Udara sebagai Intinya
  • Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
  • Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
  • Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
  • Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
  • Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.

Fungsi Induktor (Coil) dan Aplikasinya

Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.

Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :

    • Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
    • Transformator (Transformer)
    • Motor Listrik
    • Solenoid
    • Relay
    • Speaker
    • Microphone

  • Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.


  • Transistor

Transistor NPN

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.

Transistor PNP

Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)



  • Water Level Sensor

Water level merupakan sensor yang berfungsi untuk mendeteksi ketinggian air dengan output analog kemudian diolah menggunakan mikrokontroler. Pada rangkaian ini bisa digunakan capcitor dan induktor agar switch relay tidak berpindah-pindah. Cara kerja sensor ini adalah pembacaan resistansi yang dihasilkan air yang mengenai garis lempengan pada sensor. Semakin banyak air yang mengenai lempengan tersebut, maka nilai resistansinya akan semakin kecil dan sebaliknya.
Water sensors berfungsi untuk mendeteksi keberadaan air atau kelembaban. Ada beberapa jenis water sensor yang berbeda, tetapi prinsip dasarnya adalah mendeteksi perubahan dalam konduktivitas listrik atau kapasitansi yang disebabkan oleh kelembaban.

    Jumlah Pin pada Sensor ini berjumlah 3 Yaitu :

    1. Pin Negatif (-)
    2. Pin Positif (+)
    3. Pin Data (S)

Grafik respon water level sensor

JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar

  •  Sensor LM35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyaikeluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.


IC LM 35 ini tidak memerlukan pengkalibrasian atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat celcius pada temperature ruang. Jangka sensor mulai dari – 55°C sampai dengan 150°C, IC LM35 penggunaannya sangat mudah, difungsikan sebagai kontrol dari indicator tampilan catu daya terbelah. IC LM 35 dapat dialiri arus 60 Î¼ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan. Untuk mendeteksi suhu digunakan sebuah sensor suhu LM35 yang dapat dikalibrasikan langsung dalam C (celcius), LM35 ini difungsikan sebagai basic temperature sensor. 


Prinsip Kerja LM35 :
Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control.

Sensor suhu LM35 mampu melakukan pengukuran suhu dari suhu -55ºC hingga +150ºC dengan toleransi kesalahan pengukuran ±0.5ºC.

Dilihat dari tipenya range suhu dapat dilihat sebagai berikut :
  • LM35, LM35A -> range pengukuran temperature  -55ºC hingga +150ºC.
  • LM35C, LM35CA -> range pengukuran temperature -40ºC hingga +110ºC.
  • LM35D -> range pengukuran temperature 0ºC hingga +100ºC. 
Kelebihan LM 35 :
  • Rentang suhu yang jauh, antara -55 sampai +150ºC
  • Low self-heating, sebesar 0.08 ºC
  • Beroperasi pada tegangan 4 sampai 30 V
  • Tidak memerlukan pengkondisian sinyal
Kekurangan LM 35:
  • Membutuhkan tegangan untuk beroperasi.

Grafik:


·         Kalibrasi dalam satuan derajat celcius.

·         Lineritas +10 mV/ º C.

·         Akurasi 0,5 º C pada suhu ruang.

·         Range +2 º C – 150 º C.

·         Dioperasikan pada catu daya 4 V – 30 V.

·         Arus yang mengalir kurang dari 60 Î¼A.


  • Sensor UV 

Sensor UV ini mengukur kekuatan atau intensitas radiasi insiden ultraviolet (UV). Sensor UV digunakan untuk menentukan paparan radiasi ultraviolet di laboratorium atau pengaturan lingkungan. Itu dapat menggunakan elemen fotosensitif untuk mengubah sinyal ultraviolet menjadi sinyal listrik terukur melalui mode fotovoltaik dan mode panduan cahaya.
    Sensor UV (Ultraviolet) adalah perangkat elektronik yang dirancang khusus untuk mendeteksi radiasi ultraviolet dalam spektrum elektromagnetik. Radiasi ultraviolet terletak di luar spektrum cahaya yang terlihat oleh mata manusia, dan terdiri dari sinar UV-A, UV-B, dan UV-C. Berikut adalah beberapa penjelasan mengenai UV sensor:








Fungsi Utama:
   - Deteksi Radiasi UV: Sensor UV digunakan untuk mendeteksi intensitas radiasi ultraviolet dalam lingkungan tertentu.

Penggunaan Umum:
   - Keamanan UV: Sensor UV dapat digunakan dalam perangkat keamanan untuk mendeteksi paparan radiasi UV yang tinggi, seperti dalam penggunaan pada goggle atau pakaian pelindung untuk pekerja yang terpapar radiasi UV.

Cara Keja:
    Sensor UV bekerja dengan menggunakan material fotokonduktif atau fotodioda sebagai elemen deteksinya. Saat radiasi ultraviolet (UV) mengenai sensor, energi UV diserap oleh bahan detektor, mengubah struktur atau konduktivitas bahan tersebut. Hal ini menghasilkan peningkatan arus listrik melalui sensor. Arus listrik ini kemudian diukur, dikalibrasi, dan diubah menjadi sinyal yang memberikan informasi tentang intensitas radiasi UV yang diterima oleh sensor. 


  • OP-AMP

Simbol 

 

 
Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

 

 

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu
                                                                           

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu

Inverting Amplifier


 Rumus:

NonInverting

 Rumus:

Komparator

Rumus:

Adder

Rumus:

Bentuk Gelombang

  • Decoder (IC 7447)


    IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

    IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.

Konfigurasi Pin Decoder:

a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama     pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja    dengan logika High=1.

b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang    diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan    aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,        sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.


  • Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum


  • Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.


11. Battery

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.


4. Percobaan [Kembali]

A. prosedur percobaan

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komponen yang diperlukan di library proteus

4. Rangkailah Rangkaian sesuai dengan gambar dibawah

5. jika ingin mensimulasikan jangan lupa masukkan libarary sensor 

6. Coba dijalankan rangkaian apabila ouput hidup/berputar (motor dc) maka rangkaian bisa digunakan


B. Rangkaian Simulasi


Pada Aplikasi Kontrol Tanam Daun Bawang Hidroponik Di Rumah ini kami menggunakan 3 buah sensor, yaitu : LM35, LDR, dan Water sensor

Prinsip Kerja Rangkaian:

1. WATER SENSOR


Water sensor berfungsi untuk mengukur ketingaan air dalam paralon media tanam dimana sensor ini diletakkan di lobang paralon tempat tanaman daun bawang. Ketika ketinggian air dalam paralon melebihi 1cm  maka sensor akan mendeteksi resistansi besar. dimana pada rangkaian sensor akan aktif ketika nilai dari resiatansinya yaitu besar dari 51%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,13 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai positive saturasi (+15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247. Output dari
rangkaian detector juga diumpankan pada transistor Q3 yang aktif, maka tegangan sebesar +5V pada relay 1 mengalir ke kumparan. Karena ada arus yang melewati kumparan relay 1, maka relay aktif dan switch berpindah dari kiri ke kanan sehingga buzzer hidup menandakan air dalam pipa paralon lebih dari 1 cm. 

Ketika ketinggian air dalam paralon kurang dari 1cm  maka sensor akan mendeteksi resistansi kecil. dimana pada rangkaian sensor tidak aktif ketika nilai dari resiatansinya yaitu besar dari 50%, dimana sensor akan mengeluarkan output tegangan yang tidak stabil sehingga harus diumpankan terlebih dahulu ke rangkaian penyearah yang mana kita akan mendapatkan tegangan output dari penyearah sebesar +2,07 V. Tegangan output dari penyearah ini kemudian diumpankan ke ragkaian op-amp detector non-inverting dengan tegangan pembanding sebesar +2,07 V, sehingga output dari rangkaian detector bernilai positive saturasi (+15V) yang kemudian dimasukkan ke kaki B pada IC Decoder 74247. Output dari rangkaian detector juga diumpankan pada transistor Q3 yang aktif, maka tegangan sebesar +5V pada relay 1 tidak mengalir ke kumparan. Karena tidak ada arus yang melewati kumparan relay 1, maka relay tidak aktif dan switch tidak berpindah dari kiri ke kanan sehingga motor hidup menandakan air dalam pipa paralon kecil dari 1 cm. 


2. LM35 (SENSOR SUHU)



Sistem pengendalian suhu untuk tanaman daun bawang menggunakan sensor suhu LM35 yang membaca kondisi suhu lingkungan. Jika suhu berada pada 24°-26°C, sistem beroperasi dalam kondisi normal. Namun, ketika suhu mencapai >26°C, output dari rangkaian non-inverting amplifier meningkat menjadi 3.95V. Tegangan tersebut diumpamkan dan menjadii input untuk BCD dan seven-segment display. Jika suhu melebihi 26°C, seven-segment display menunjukkan angka 1. Transistor yang terhubung dengan relay aktif ketika suhu tinggi (Vbe > 0.60V). Relay mengubah posisinya, mengaktifkan motor dan LED. Motor ini merupakan indikator dari kipas yang berfungsi untuk membantu menurunkan suhu kembali ke kondisi suhu normal hidroponik 24°-26°C yaitu 15°-25°C. 
    Lalu jika suhu <24° output dari rangkaian non-inverting amplifier meningkat menjadi 3.95V. Tegangan tersebut diumpamkan dan menjadii input untuk BCD dan seven-segment display. Jika suhu kurang dari 15°C, seven-segment display menunjukkan angka 0. Transistor yang terhubung dengan relay aktif ketika suhu tinggi (Vbe > 0.60V). Relay mengubah posisinya, mengaktifkan heater. Heater ini merupakan indikator dari pemanas yang berfungsi untuk membantu menaikan suhu kembali ke kondisi suhu normal hidroponik daun bawang yaitu 24°-26°C


3. UV Sensor


Pada sistem pengaturan Atap otomatis, kita menggunakan sensor UV dimana sensor UV dapat mendeteksi banyaknya Matahari yang masuk sensor tersebut melalui radiasi inframerah yang diterimanya. 
Saat ada kondisi matahari kita dapat tegangan sebesar 0,58 V dimana tegangan ini diumpankan ke detektor non-inverting amplifier dan meningkatkan tegangan menjadi 0,79 V yang mana cukup untuk mengaktifkan transistor sehingga tegangan 15V  masuk ke relay 7 yang diparalelkan dengan relay 9 masuk kekaki kolektor transistor Q1 lalu outputnya kekaki emitor lalu keground, karena ada arus yang mengalir dari relay, relay menjadi aktif switch berpindah dari kanan kekiri, relay 8 juga aktif karena diparalelkan dengan relay 7 dan relay 8 dan relay 10 juga aktif sehingga switch berpindah dari kiri kekanan relay 8 terjadi pemutusan loop sehingga tegangan 15 V mengalir kerelay 7 masuk keswitch masuk kemotor dengan  tegangan 14,9 v dimana motor berputar kekiri menyebabkan atap terbuka sehinggga sayuran kale bisa berfotosintesis. 


C. Video Simulasi

D. Video Teori
a. Water sensor



b. LM35 (Sensor Suhu)



c. Sensor UV


5. Download File [Kembali]
   
    Download HTML klik disini
    Download rangkaian Simulasi proteus klik disini
    Download video klik disini
    Download Datasheet Resistor klik disini
    Download Datasheet Dioda klik disini
    Download Datasheet Relay klik disini
    Download Datasheet Transistor klik disini
    Download Datasheet LED klik disini
    Download Datasheet Lampu klik disini
    Download Datasheet Motor klik disini
    Download Datasheet OP-AMP klik disini
    Download Datasheet Baterai klik disini
    Download Datasheet IC 7447 klik disini
    Download Datasheet Water Sensor klik disini
    Download Datasheet Lm35 Sensor Klik disini
    Download Datasheet  LDR sensor klik disini
    Download Library water sensor klik disini
   


















Komentar

Postingan populer dari blog ini